Species | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Archaea; Thermoplasmatota; Thermoplasmata; Methanomassiliicoccales; Methanomassiliicoccaceae; Methanomassiliicoccus_A; | |||||||||||
CAZyme ID | MGYG000004312_00485 | |||||||||||
CAZy Family | GT4 | |||||||||||
CAZyme Description | D-inositol-3-phosphate glycosyltransferase | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 6985; End: 8163 Strand: + |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd03801 | GT4_PimA-like | 3.19e-45 | 37 | 384 | 23 | 361 | phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea. |
cd03811 | GT4_GT28_WabH-like | 3.19e-38 | 37 | 356 | 21 | 327 | family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core. |
cd03820 | GT4_AmsD-like | 5.59e-37 | 34 | 371 | 19 | 337 | amylovoran biosynthesis glycosyltransferase AmsD and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. AmSD in Erwinia amylovora has been shown to be involved in the biosynthesis of amylovoran, the acidic exopolysaccharide acting as a virulence factor. This enzyme may be responsible for the formation of galactose alpha-1,6 linkages in amylovoran. |
COG0438 | RfaB | 6.26e-37 | 41 | 390 | 30 | 376 | Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]. |
cd03821 | GT4_Bme6-like | 1.71e-34 | 37 | 378 | 23 | 367 | Brucella melitensis Bme6 and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. Bme6 in Brucella melitensis has been shown to be involved in the biosynthesis of a polysaccharide. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
AGN26830.1 | 3.83e-235 | 1 | 392 | 1 | 392 |
CAJ35479.1 | 2.66e-27 | 37 | 381 | 21 | 366 |
ASJ03586.1 | 5.02e-26 | 189 | 388 | 180 | 380 |
AEG17951.1 | 1.99e-25 | 37 | 390 | 24 | 370 |
QDT34645.1 | 5.78e-25 | 163 | 389 | 151 | 382 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
3C4Q_A | 7.17e-14 | 186 | 391 | 192 | 405 | Structureof the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4Q_B Structure of the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4V_A Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum],3C4V_B Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum] |
3C48_A | 7.47e-14 | 186 | 391 | 212 | 425 | Structureof the retaining glycosyltransferase MshA: The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum- APO (OPEN) structure. [Corynebacterium glutamicum],3C48_B Structure of the retaining glycosyltransferase MshA: The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum- APO (OPEN) structure. [Corynebacterium glutamicum] |
3QHP_A | 5.39e-07 | 217 | 373 | 5 | 157 | Crystalstructure of the catalytic domain of cholesterol-alpha-glucosyltransferase from Helicobacter pylori [Helicobacter pylori 26695],3QHP_B Crystal structure of the catalytic domain of cholesterol-alpha-glucosyltransferase from Helicobacter pylori [Helicobacter pylori 26695] |
6EJJ_A | 1.05e-06 | 212 | 358 | 181 | 325 | Structureof a glycosyltransferase / state 2 [Campylobacter jejuni],6EJJ_B Structure of a glycosyltransferase / state 2 [Campylobacter jejuni] |
6EJI_A | 1.85e-06 | 212 | 358 | 181 | 325 | Structureof a glycosyltransferase [Campylobacter jejuni],6EJI_B Structure of a glycosyltransferase [Campylobacter jejuni],6EJK_A Structure of a glycosyltransferase [Campylobacter jejuni],6EJK_B Structure of a glycosyltransferase [Campylobacter jejuni] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
D6Z995 | 6.50e-23 | 153 | 388 | 194 | 432 | D-inositol 3-phosphate glycosyltransferase OS=Segniliparus rotundus (strain ATCC BAA-972 / CDC 1076 / CIP 108378 / DSM 44985 / JCM 13578) OX=640132 GN=mshA PE=3 SV=1 |
D6Y4U7 | 2.92e-21 | 186 | 391 | 201 | 414 | D-inositol 3-phosphate glycosyltransferase OS=Thermobispora bispora (strain ATCC 19993 / DSM 43833 / CBS 139.67 / JCM 10125 / KCTC 9307 / NBRC 14880 / R51) OX=469371 GN=mshA PE=3 SV=1 |
B1MHQ0 | 4.07e-19 | 161 | 391 | 185 | 413 | D-inositol 3-phosphate glycosyltransferase OS=Mycobacteroides abscessus (strain ATCC 19977 / DSM 44196 / CIP 104536 / JCM 13569 / NCTC 13031 / TMC 1543) OX=561007 GN=mshA PE=3 SV=1 |
A0LQY9 | 4.88e-17 | 161 | 361 | 194 | 403 | D-inositol 3-phosphate glycosyltransferase OS=Acidothermus cellulolyticus (strain ATCC 43068 / DSM 8971 / 11B) OX=351607 GN=mshA PE=3 SV=1 |
A4X1R6 | 5.57e-17 | 161 | 391 | 222 | 466 | D-inositol 3-phosphate glycosyltransferase OS=Salinispora tropica (strain ATCC BAA-916 / DSM 44818 / CNB-440) OX=369723 GN=mshA PE=3 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000047 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.