logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000004569_01002

You are here: Home > Sequence: MGYG000004569_01002

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species RF16 sp900556095
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Paludibacteraceae; RF16; RF16 sp900556095
CAZyme ID MGYG000004569_01002
CAZy Family GT4
CAZyme Description Glycogen synthase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
420 MGYG000004569_10|CGC1 47443.26 6.4428
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000004569 2389314 MAG France Europe
Gene Location Start: 86579;  End: 87841  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000004569_01002.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 237 386 4.2e-34 0.95

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03801 GT4_PimA-like 7.69e-53 4 396 3 348
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
COG0438 RfaB 4.57e-42 136 417 82 379
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd03819 GT4_WavL-like 5.66e-40 137 383 76 323
Vibrio cholerae WavL and similar sequences. This family is most closely related to the GT4 family of glycosyltransferases. WavL in Vibrio cholerae has been shown to be involved in the biosynthesis of the lipopolysaccharide core.
pfam00534 Glycos_transf_1 4.30e-36 241 388 1 151
Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family.
cd03808 GT4_CapM-like 7.09e-35 136 388 80 336
capsular polysaccharide biosynthesis glycosyltransferase CapM and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. CapM in Staphylococcus aureus is required for the synthesis of type 1 capsular polysaccharides.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
ADQ78277.1 4.10e-250 1 416 1 416
QDO69341.1 1.15e-223 1 416 1 418
AUI45475.1 4.84e-223 1 418 1 420
QCQ31836.1 4.84e-223 1 418 1 420
QTO27481.1 4.84e-223 1 418 1 420

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
6TVP_A 6.56e-18 98 415 44 399
Structureof Mycobacterium smegmatis alpha-maltose-1-phosphate synthase GlgM [Mycolicibacterium smegmatis MC2 155],6TVP_B Structure of Mycobacterium smegmatis alpha-maltose-1-phosphate synthase GlgM [Mycolicibacterium smegmatis MC2 155]
3C4Q_A 6.57e-13 138 420 103 411
Structureof the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4Q_B Structure of the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4V_A Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum],3C4V_B Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum]
3C48_A 6.83e-13 138 420 123 431
Structureof the retaining glycosyltransferase MshA: The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum- APO (OPEN) structure. [Corynebacterium glutamicum],3C48_B Structure of the retaining glycosyltransferase MshA: The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum- APO (OPEN) structure. [Corynebacterium glutamicum]
3L01_A 1.17e-11 1 375 3 389
ChainA, GlgA glycogen synthase [Pyrococcus abyssi],3L01_B Chain B, GlgA glycogen synthase [Pyrococcus abyssi]
3FRO_A 1.20e-11 1 375 3 389
Crystalstructure of Pyrococcus abyssi glycogen synthase with open and closed conformations [Pyrococcus abyssi],3FRO_B Crystal structure of Pyrococcus abyssi glycogen synthase with open and closed conformations [Pyrococcus abyssi],3FRO_C Crystal structure of Pyrococcus abyssi glycogen synthase with open and closed conformations [Pyrococcus abyssi]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q59002 2.03e-37 1 362 1 327
Uncharacterized glycosyltransferase MJ1607 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1607 PE=3 SV=1
P9WMY9 4.07e-26 1 414 1 392
Glycogen synthase OS=Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) OX=83332 GN=Rv3032 PE=1 SV=1
P9WMY8 4.07e-26 1 414 1 392
Glycogen synthase OS=Mycobacterium tuberculosis (strain CDC 1551 / Oshkosh) OX=83331 GN=MT3116 PE=3 SV=1
P87172 2.42e-19 191 419 139 369
Phosphatidylinositol N-acetylglucosaminyltransferase gpi3 subunit OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) OX=284812 GN=gpi3 PE=3 SV=1
Q4H4F8 1.65e-18 137 396 84 362
2-deoxystreptamine N-acetyl-D-glucosaminyltransferase OS=Niallia circulans OX=1397 GN=btrM PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000075 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000004569_01002.