logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000004690_01115

You are here: Home > Sequence: MGYG000004690_01115

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Eubacterium_R sp014465955
Lineage Bacteria; Firmicutes_A; Clostridia; Oscillospirales; Acutalibacteraceae; Eubacterium_R; Eubacterium_R sp014465955
CAZyme ID MGYG000004690_01115
CAZy Family GT35
CAZyme Description Maltodextrin phosphorylase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
510 58549.04 5.6448
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000004690 1726698 MAG Spain Europe
Gene Location Start: 1312;  End: 2844  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.1

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT35 2 510 7.1e-168 0.7166172106824926

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
TIGR02093 P_ylase 0.0 2 510 279 794
glycogen/starch/alpha-glucan phosphorylases. This family consists of phosphorylases. Members use phosphate to break alpha 1,4 linkages between pairs of glucose residues at the end of long glucose polymers, releasing alpha-D-glucose 1-phosphate. The nomenclature convention is to preface the name according to the natural substrate, as in glycogen phosphorylase, starch phosphorylase, maltodextrin phosphorylase, etc. Name differences among these substrates reflect differences in patterns of branching with alpha 1,6 linkages. Members include allosterically regulated and unregulated forms. A related family, TIGR02094, contains examples known to act well on particularly small alpha 1,4 glucans, as may be found after import from exogenous sources. [Energy metabolism, Biosynthesis and degradation of polysaccharides]
cd04300 GT35_Glycogen_Phosphorylase 0.0 1 510 281 795
glycogen phosphorylase and similar proteins. This is a family of oligosaccharide phosphorylases. It includes yeast and mammalian glycogen phosphorylases, plant starch/glucan phosphorylase, as well as the maltodextrin phosphorylases of bacteria. The members of this family catalyze the breakdown of oligosaccharides into glucose-1-phosphate units. They are important allosteric enzymes in carbohydrate metabolism. The allosteric control mechanisms of yeast and mammalian members of this family are different from that of bacterial members. The members of this family belong to the GT-B structural superfamily of glycoslytransferases, which have characteristic N- and C-terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility.
pfam00343 Phosphorylase 0.0 1 510 197 661
Carbohydrate phosphorylase. The members of this family catalyze the formation of glucose 1-phosphate from one of the following polyglucoses; glycogen, starch, glucan or maltodextrin.
COG0058 GlgP 9.61e-178 26 510 269 748
Glucan phosphorylase [Carbohydrate transport and metabolism].
PRK14985 PRK14985 1.63e-177 18 508 296 794
maltodextrin phosphorylase; Provisional

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
CUH92218.1 3.27e-200 1 509 261 778
BCJ96995.1 4.77e-200 1 510 261 779
BCN32947.1 3.40e-198 1 510 264 781
QEY34129.1 1.20e-197 1 510 260 778
CBL34093.1 2.49e-196 3 510 268 783

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
2C4M_A 5.78e-162 12 510 280 788
Starchphosphorylase: structural studies explain oxyanion-dependent kinetic stability and regulatory control. [Corynebacterium callunae],2C4M_B Starch phosphorylase: structural studies explain oxyanion-dependent kinetic stability and regulatory control. [Corynebacterium callunae],2C4M_C Starch phosphorylase: structural studies explain oxyanion-dependent kinetic stability and regulatory control. [Corynebacterium callunae],2C4M_D Starch phosphorylase: structural studies explain oxyanion-dependent kinetic stability and regulatory control. [Corynebacterium callunae]
1L5V_A 1.93e-134 13 508 291 792
CrystalStructure of the Maltodextrin Phosphorylase complexed with Glucose-1-phosphate [Escherichia coli],1L5V_B Crystal Structure of the Maltodextrin Phosphorylase complexed with Glucose-1-phosphate [Escherichia coli],1L5W_A Crystal Structure of the Maltodextrin Phosphorylase Complexed with the Products of the Enzymatic Reaction between Glucose-1-phosphate and Maltotetraose [Escherichia coli],1L5W_B Crystal Structure of the Maltodextrin Phosphorylase Complexed with the Products of the Enzymatic Reaction between Glucose-1-phosphate and Maltotetraose [Escherichia coli],1L6I_A Crystal Structure of the Maltodextrin Phosphorylase complexed with the products of the enzymatic reaction between glucose-1-phosphate and maltopentaose [Escherichia coli],1L6I_B Crystal Structure of the Maltodextrin Phosphorylase complexed with the products of the enzymatic reaction between glucose-1-phosphate and maltopentaose [Escherichia coli],2ASV_A Chain A, Maltodextrin phosphorylase [Escherichia coli],2ASV_B Chain B, Maltodextrin phosphorylase [Escherichia coli],2AV6_A Chain A, Maltodextrin phosphorylase [Escherichia coli],2AV6_B Chain B, Maltodextrin phosphorylase [Escherichia coli],2AW3_A X-Ray studies on maltodextrin phosphorylase complexes: recognition of substrates and cathalitic mechanism of phosphorylase family [Escherichia coli],2AW3_B X-Ray studies on maltodextrin phosphorylase complexes: recognition of substrates and cathalitic mechanism of phosphorylase family [Escherichia coli],2AZD_A Chain A, Maltodextrin phosphorylase [Escherichia coli],2AZD_B Chain B, Maltodextrin phosphorylase [Escherichia coli]
1E4O_A 5.40e-134 13 508 291 792
Phosphorylaserecognition and phosphorolysis of its oligosaccharide substrate: answers to a long outstanding question [Escherichia coli],1E4O_B Phosphorylase recognition and phosphorolysis of its oligosaccharide substrate: answers to a long outstanding question [Escherichia coli],1QM5_A Phosphorylase recognition and phosphorylysis of its oligosaccharide substrate: answers to a long outstanding question [Escherichia coli],1QM5_B Phosphorylase recognition and phosphorylysis of its oligosaccharide substrate: answers to a long outstanding question [Escherichia coli]
7TM7_A 3.70e-133 13 508 300 800
ChainA, Alpha-1,4 glucan phosphorylase [Klebsiella pneumoniae subsp. pneumoniae HS11286],7TM7_B Chain B, Alpha-1,4 glucan phosphorylase [Klebsiella pneumoniae subsp. pneumoniae HS11286]
5IKO_A 1.53e-132 16 510 330 831
Crystalstructure of human brain glycogen phosphorylase [Homo sapiens],5IKP_A Crystal structure of human brain glycogen phosphorylase bound to AMP [Homo sapiens]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P73511 1.12e-136 10 510 316 826
Glycogen phosphorylase OS=Synechocystis sp. (strain PCC 6803 / Kazusa) OX=1111708 GN=glgP PE=3 SV=1
P00490 1.08e-133 13 508 292 793
Maltodextrin phosphorylase OS=Escherichia coli (strain K12) OX=83333 GN=malP PE=1 SV=7
P11216 7.75e-132 16 510 327 828
Glycogen phosphorylase, brain form OS=Homo sapiens OX=9606 GN=PYGB PE=1 SV=5
P79334 1.06e-131 14 510 325 828
Glycogen phosphorylase, muscle form OS=Bos taurus OX=9913 GN=PYGM PE=1 SV=3
P39123 1.36e-131 1 510 281 794
Glycogen phosphorylase OS=Bacillus subtilis (strain 168) OX=224308 GN=glgP PE=2 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000080 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000004690_01115.