logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000004757_00721

You are here: Home > Sequence: MGYG000004757_00721

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species UBA6398 sp900555645
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Bacteroidaceae; UBA6398; UBA6398 sp900555645
CAZyme ID MGYG000004757_00721
CAZy Family GT2
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
820 MGYG000004757_37|CGC1 93676.76 8.8614
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000004757 2504990 MAG China Asia
Gene Location Start: 2833;  End: 5295  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000004757_00721.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 258 384 2e-20 0.7294117647058823

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
pfam16269 DUF4922 5.98e-87 618 808 1 188
Domain of unknown function (DUF4922). This family consists of uncharacterized proteins around 310 residues in length and is mainly found in various Bacteroides and Parabacteroides species. Several members are annotated as putative glycosyltransferases, but the specific function of this family is still unknown.
cd00761 Glyco_tranf_GTA_type 1.17e-18 259 378 1 118
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.
pfam00535 Glycos_transf_2 1.18e-18 258 416 1 156
Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.
cd06433 GT_2_WfgS_like 2.77e-13 258 465 1 200
WfgS and WfeV are involved in O-antigen biosynthesis. Escherichia coli WfgS and Shigella dysenteriae WfeV are glycosyltransferase 2 family enzymes involved in O-antigen biosynthesis. GT-2 enzymes have GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families.
cd02525 Succinoglycan_BP_ExoA 1.28e-12 258 376 3 119
ExoA is involved in the biosynthesis of succinoglycan. Succinoglycan Biosynthesis Protein ExoA catalyzes the formation of a beta-1,3 linkage of the second sugar (glucose) of the succinoglycan with the galactose on the lipid carrie. Succinoglycan is an acidic exopolysaccharide that is important for invasion of the nodules. Succinoglycan is a high-molecular-weight polymer composed of repeating octasaccharide units. These units are synthesized on membrane-bound isoprenoid lipid carriers, beginning with galactose followed by seven glucose molecules, and modified by the addition of acetate, succinate, and pyruvate. ExoA is a membrane protein with a transmembrance domain at c-terminus.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QUB41125.1 3.00e-281 67 814 64 799
QUB65927.1 6.98e-281 4 814 5 797
QUB69156.1 3.14e-279 4 814 5 797
QUB57862.1 3.54e-278 4 814 5 797
QUB56535.1 3.54e-278 4 814 5 797

PDB Hits      help

has no PDB hit.

Swiss-Prot Hits      help

has no Swissprot hit.

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000063 0.000012 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000004757_00721.